Early Mobilization of Critically III Patient: fact of fantasy?

Matthias Eikermann

Content

ICU-associated muscle weakness: causes, implications, and mechanisms

Postoperative respiratory complications: impact of respiratory muscle weakness

Benefits of early mobilization in the ICU

The SOMS trial

Mechanisms of ICU acquired muscle weakness

Clinical focus in the ICU contributes to ICU-associated muscle weakness.

Focus on safety and patients' comfort

- Pain, Anxiety
- Devices
- Falls
- Hemodynamics
- Weight bearing restrictions
- CVVH lines / function
- Aspiration

Culture of low-tidal volume ventilation (6 cc/kg)

- ARDS
- Risk of ARDS
- All patients with hypercarbic respiratory failure

Opioids, Propofol, Seroquel, NMBA, Restraints, NG-tube, Bed-rest, Controlled ventilation, day-light

MGH

ICU-associated muscle weakness: causes and implications

Overview of respiratory muscle weakness and respiratory arousal

Benefits of early mobilization in the ICU

Barriers to mobilizing patients in the ICU

The SOMS trial

Respiratory muscles include upper airway dilators and diaphragmatic pump muscles

Respiratory pump muscles

- Weaning failure (rapid shallow breathing)
- Extubation failure (cough)

Upper airway muscles

- Aspiration
- Airway collapse

Respiratory arousal: neural activation of pump muscles & upper-airway dilatory muscles

Anesthetics, NMBA and cognitive dysfunction can impair balance between dilating upper airway dilator & pump muscles

Propofol decreases upper airway muscle activity & diminishes negative pressure from respiratory pump

Effects of anesthetics on respiratory muscles: Ketamine compared with propofol is more forgiving

Ketamine: Higher ventilatory drive

No upper airway muscle compromise

Ketamine: Dissociation between unconsciousness and airway muscle dysfunction

MGH 1811

EEG: sleep-like increase in total power

EMG: activation (low-dose range)

Opioids suppress breathing by multiple mechanisms

Subclinical doses of neuromuscular blocking agents decrease pharyngeal airway muscle activity.

Baseline

TOF 80

Pharyngeal muscle weakness:

Association between ICU-acquired muscle weakness and aspiration

RACU: FEES in patients with and without weakness

CRITICAL CARE MEDICINE

Muscle Weakness Predicts Pharyngeal Dysfunction and Symptomatic Aspiration in Long-term Ventilated Patients

Hooman Mirzakhani, M.D.,* June-Noelle Williams, M.S., C.C.C.-S.L.P.,† Jennifer Mello, M.S., C.C.C.-S.L.P.,† Sharma Joseph, M.D.,‡ Matthew J. Meyer, M.D.,‡ Karen Waak, P.T., D.P.T., C.C.S.,§ Ulrich Schmidt, M.D.,|| Emer Kelly, M.D.,# Matthias Elkermann, M.D., Ph.D.** ICU acquired respiratory muscle weakness

The diaphragm

Immobilization (Ventilator-induced) leads to weakness in respiratory muscles

Ultrasound of diaphragm

Evoked airway occlusion pressure

Diaphragm Muscle Thinning in Mechanically Ventilated Patients

Horiana B. Grosu, Young Im Lee, Jarone Lee, Edward Eden, Matthias Eikermann and Keith Rose

Figure 2. Relationship between duration of mechanical ventilation (MV) and diaphragmatic function. Maximal twitch airway occlusion pressure (TwPtr) generated by magnetic stimulation of the phrenic nerves at different time points in short-term MV (*open bar*; n = 6) and long-term MV (*solid bars*; n = 6) groups. H = number of hours of MV; D = number of days of MV.

Preclinical data show that mechanical ventilation is associated diaphragmatic weakness

Immobilizing ventilator settings

Fig. 5. Diaphragmatic tetanic force (forced divided by cross-sectional area [CSA]) at various stimulation frequencies in control, assist-control mechanical ventilation (AMV), and controlled mechanical ventilation (CMV). * p < 0.01 for CMV versus control and AMV. AMV attenuated the force-loss induced by CMV. (From Reference 37, with permission.)

Muscle relaxants make it worse

Frequency (Hz)

Spontaneous breathing can improve hemodynamics and O_2 -delivery in ARDS with less sedation and shorter ICU LOS

Spontaneous Breathing During Ventilatory Support Improves Ventilation-Perfusion Distributions in Patients with Acute Respiratory Distress Syndrome

CHRISTIAN PUTENSEN, NORBERT J. MUTZ, GABRIELE PUTENSEN-HIMMER, and JÖRG ZINSERLING

Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Bonn, Germany; and Division of Intensive Care Medicine, Department of Anesthesia and Intensive Care Medicine, University of Innsbruck, Innsbruck, Austria

Spontaneous breathing :

- Right ventricular end-diastolic volume,
- Stroke volume
- Cardiac index (CI)
- PaO2
- Oxygen delivery
- Mixed venous oxygen tension (PvO2)
- Reductions in pulmonary vascular resistance.

Long-Term Effects of Spontaneous Breathing During Ventilatory Support in Patients with Acute Lung Injury

CHRISTIAN PUTENSEN, SABINE ZECH, HERMANN WRIGGE, JÖRG ZINSERLING, FRANK STÜBER, TILMANN VON SPIEGEL, and NORBERT MUTZ

Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Bonn, Germany; and Department of Anesthesia and Intensive Care Medicine, University of Innsbruck, Innsbruck, Austria

Spontaneous breathing :

- Less sedation.
- Improves cardiopulmonary function
- Shorter duration of ventilatory support
- Shorter ICU stay.

Remain within a narrow range of muscle activation to avoid atrophy and protect from labored breathing injury

Optimize delicate balance every day

CASE RECORDS OF THE MASSACHUSETTS GENERAL HOSPITAL

Case 11-2014: A Man with Traumatic Injuries after a Bomb Explosion at the Boston Marathon

Matthias Eikermann, M.D., George Velmahos, M.D., Suhny Abbara, M.D., Paul L. Huang, M.D., Shawn P. Fagan, M.D., Ronald E. Hirschberg, M.D., John Y. Kwon, M.D., and Vania Nosé, M.D., Ph.D.

- Spontaneous breathing on the ventilator and early extubation
- Enabling optimal healing of the residual right leg.
- Early treatment and prevention of functional limitations, such as sitting up and standing,
- Positioning and exercise training to preserve joint range of motion and muscle length.
- As the patient improved, his physical therapy progressed to include a focus on aerobic exercise and functional mobility training,

Lisfranc fracture

Content

Overview of respiratory function and respiratory arousal

ICU-associated muscle weakness: causes and implications

Benefits of early mobilization in the ICU

Barriers to mobilizing patients in the ICU

The SOMS trial

Early mobilization

World War II

Effort to expedite the recovery of soldiers for return to the battlefield

Our definition

 In-bed mobility, passive range of motion exercises, edge of bed activities, transfers out of bed to chair, and gait training

Morris et al: showed that early mobilization in the medical <u>ICU</u> accelerates ICU and hospital length of stay

Goal-directed mobility protocol

Results of the trial

	Table 3. Outcomes (survivors)				
		Usual Care $(n = 135)$	Protocol $(n = 145)$	р	
DUARDO	Days to first out of bed	13.7 (11.7–15.7)	8.5 (6.6-10.5)	<.001	
	Days to first out of bed (adjusted ^a)	11.3(9.6-13.4)	5.0(4.3-5.9)	<.001	
2	Ventilator days	9.0(7.5-10.4)	7.9 (6.4-9.3)	.298	
-	Ventilator days (adjusted ^a)	10.2 (8.7 - 11.7)	8.8 (7.4-10.3)	.163	
	ICU LOS days	8.1 (7.0-9.3)	7.6 (6.3-8.8)	.084	
	ICU LOS days (adjusted ^a)	6.9(5.9 - 8.0)	5.5(4.7-6.3)	.025	
	Hospital LOS days	17.2 (14.2-20.2)	14.9(12.6-17.1)	.048	
	Hospital LOS days (adjusted ^a)	14.5 (12.7-16.7)	11.2 (9.7-12.8)	.006	

Data are presented as means (confidence intervals).

Adjusted^a, adjusted for body mass index, Acute Physiology and Chronic Health Evaluation II, and vasopressors.

ICU, intensive care unit; LOS, length of stay.

Schweickert et al show that early mobilization in the Medical ICU improves recovery of functional mobility

Multi-centric RCT

- Goal-directed early mobility with PT versus standard of care
- All patients: weaning protocol, daily d/c of sedation attempts.
- Primary: Function mobility at hospital discharge

Recovery of functional mobility

Figure 2: Probability of return to independent functional status in intervention and control groups

The Lancet 2009

Early mobilization in the Surgical ICU: MGH experience

Potential issues

- Wound pain?
- Inflammation?
- Weight bearing restrictions?
- Drains or other medical devices?
- Open abdomen/chest/fascia?

Survey: Barriers to early mobilization

Orchestrating a culture of change in an interdisciplinary fashion

Identify stakeholders

- Nurses (CNS, Directors, Staff)
- PT
- PM&R
- Surgeons
- Fellows
- Anesthesia & CC-Attendings

Plan, do, check, act: Design a communication tool

Orchestrating a culture of change in an interdisciplinary fashion

Validate the communication tool

The surgical intensive care unit optimal mobility score predicts mortality and length of stay

George Kasotakis, MD; Ulrich Schmidt, MD, PhD; Dana Perry, RN; Martina Grosse-Sundrup, MD; John Benjamin, MD; Cheryl Ryan, RN; Susan Tully, RN; Ronald Hirschberg, MD; Karen Waak, DPT; George Velmahos, MD, PhD; Edward A. Bittner, MD, PhD; Ross Zafonte, DO; J. Perren Cobb, MD; Matthias Eikermann, MD, PhD

Use it and spread the word, study

Open Access

BMJ OPEN Surgical Intensive Care Unit Optimal Mobilisation Score (SOMS) trial: a protocol for an international, multicentre, randomised controlled trial focused on goal-directed early mobilisation of surgical ICU patients

> Matthew J Meyer,¹ Anne B Stanislaus,¹ Jarone Lee,² Karen Waak,³ Cheryl Ryan,⁴ Richa Saxena,¹ Stephanie Ball,⁴ Ulrich Schmidt,¹ Trudy Poon,¹ Simone Piva,⁵ Matthias Walz,⁶ Daniel S Talmor,⁷ Manfred Blobner,⁸ Nicola Latronico,⁵ Matthias Eikermann^{1,9}

Protocol

SICU Optimal Mobilization Score (SOMS) predicts morbidity and mortality in the ICU (CCM 2012)

The surgical intensive care unit optimal mobility score predicts mortality and length of stay

George Kasotakis, MD; Ulrich Schmidt, MD, PhD; Dana Perry, RN; Martina Grosse-Sundrup, MD; John Benjamin, MD; Cheryl Ryan, RN; Susan Tully, RN; Ronald Hirschberg, MD; Karen Waak, DPT; George Velmahos, MD, PhD; Edward A. Bittner, MD, PhD; Ross Zafonte, DO; J. Perren Cobb, MD; Matthias Eikermann, MD, PhD

outcome variables taken on day 1 after admission to the intensive care unit			
Variable	Measure (Mean \pm SD)	Range	
Age	60.2 ± 18.1	18-93	
Male:female ratio	58.4 (n = 66):41.6 (n = 47)	Not available	
Acute Physiology and Chronic Health Evaluation II score	15.68 ± 6.9	3-32	
Comorbidity index	2.29 ± 1.85	0-10	
Vasopressor therapy Ventilator days	49.6% (n=56) 3.19 ± 2.48	Not available 0-10	
Renal replacement therapy	2.7% (n = 3)	Not available	
Delirium	18.9% (n=21)	Not available	
Achieved surgical intensive care unit optimal mobilization scale	2 ± 1.46	1-4	
Surgical intensive care unit length of stay	5.21 ± 5.26	1-31	
Hospital length of stay	14.1 ± 11.31	1-61	
Mortality	9.7% (n=11)	N/A	

Table 1. Patient demographics (during the first full day in the surgical intensive care unit) and

SOMS score

Walking

Standing

Sitting

2

Passive Mobilization

No mobilization

0

Intervention

- Multidisciplinary team
 - Nursing, clinicians, PT (when consulted), study staff
- Daily Work
 - Rounding tool: SOMS goal set in AM by multidisciplinary team and plan created to achieve goal
 - Work towards goal throughout day
 - Identify barriers and work around ('sedation')
 - Score SOMS in PM by day RN
 - List barriers on score sheet if goal not met

Study Population

- >18 years old
- <48hrs of mechanical ventilation with likely continued mechanical ventilation >24hrs
 - Baseline functional independence (Barthel ≥ 70)
 - Determined at time of consent from patient's health care proxy; frame of reference 2wks prior to hospital admission

Baseline Data

	STUDY	CONTROL	
Age (years)	60.21±17.35	58.78±17.46	
Condor	M 60.8%	M 62.7%	
Gender	F 39.2%	F 37.3%	
	White 78.4%	White 78.4%	
Race	African American 3.9%	African American 7.8%	
	Asian 2%	Asian 2%	
Ethnicity	Other 15.7 %	Other 11.8 %	
Height (inches)	66.24±4.61	67.51±6.74	
Weight	171.51±41.88	179.76±60.53	
Glasgow Coma Scale	10.1±2.08	9.66±2.63	
Pre-enrolment mSOMS	0.22±0.47	0.36±0.8	
Admission hemoglobin (g/dL)	11.27±2.16	11.82±2.42	
Admission serum creatinine (mg/dL)	1.52±1.60	1.51±1.26	
Admission INR	1.26±0.35	1.29±0.34	
Admission serum albumin (g/dL)	3.13±0.78	3.20±0.76	
Total APACHE II Score	16.9±8.42	17.58±7.72	
Total Barthel Score	98.33±6.29	98.43±5.04	

Mean achieved SOMS

SICU Length of stay

Hospital Length of Stay

Days with mechanical ventilation

Medical Research Council (MRC) Evaluation

0. No contraction

- 1. Contraction, no active movement.
- 2. Active movement that cannot overcome gravity
- 3. Active movement that can overcome gravity
- 4. Active movement against gravity and resistance
- 5. Normal muscle strength

MRC: Medical Research Council.

Arm Abduction	Wrist Flexion	Wrist Extension	Leg Flexion	Knee Extension	Dorsal Foot Flexion	SUM

Functional Independence Measure (FIM)

INPATIENT REHABILITATION FACILITY - PATIENT ASSESSMENT INSTRUMENT Pros 2		
Function Modifiers*	29. FIM ^{1W} Instrument*	
Complete the following specific functional items prior to scoring the FIM "Instrument: ADMSDON DISCHARGE 29. Bladder Level	ADMISSION DISCHARGE GOAL SELF-CARE	
25. Distance Walked (levt) 36. Distance Traveled (levt) 37. Distance Traveled (levt) 36. Distance Traveled (levt) 37. Traveled (levt) 37. Viak 37. Viak 38. Vtheelchair 37. Viak 38. Vtheelchair 37. Viak 38. Vtheelchair 37. Viak 38. Vtheelchair 39. (Viak/Medethair) as the lowest (most dependent) score of items 37 and 38)	Fill LEVELS No Holpor 7 Complete Independence (Timely, Safely) 6 6 Modified Independence (Device) Helper - Modified Dependence 7 Supervision (Subject = 100%) 5 Supervision (Subject = 100%) 4 Minimal Assistance (Subject = 75% or more) 3 Moderate Assistance (Subject = 50% or more) 3 Moderate Assistance (Subject = 50% or more) 2 Maximal Assistance (Subject = 25% or more) 1 Total Assistance (Subject = 55%) 8 Activity does not occur; Use this code only at admission	

TRANSFERS I. Bed, Chair, Whichair	
J. Toilet	
K. Tub, Shower	
LOCOMOTION	W - Walk C - wheelChair B - Both
L. Walk/Wheelchair	
M. Stairs	
	A - Auditory

FIM LEVELS

No Helper

- 7 Complete Independence (Timely, Safely)
- 6 Modified Independence (Device)

Helper - Modified Dependence

- 5 Supervision (Subject = 100%)
- 4 Minimal Assistance (Subject = 75% or more)
- 3 Moderate Assistance (Subject = 50% or more)

Helper - Complete Dependence

2 Maximal Assistance (Subject = 25% or more)

1 Total Assistance (Subject less than 25%)

8 Activity does not occur; Use this code only at admission

*The FIM data set, measurement scale and impairment codes incorporated or referenced herein are the property of U B Foundation Activities, Inc. ⊕1993, 2001 U B Foundation Activities, Inc. The FIM mark is evened by UBFA, Inc.

SICU Hospital

FIM during Hospital Stay

Other variables: Drugs used in ICU

SOMS is an an international, multicentric RCT

External centers

Munich

- German validated study completed (n=120)
- IRB for RCT approved (last week)
- Recruitment will start next week

- Brescia
- Italian validation study completed
- IRB submitted

Conclusion

Keep your patients moving

- Bed-rest is associated with morbidity
- Early mobilization improves outcome
- Get the patient out of bed
- Do we need sedation / opioids today?
- Do we need neuromuscular blockade?
- Do we need controlled ventilation today?
- Can we extubate the patient today?

Get more evidence

- Effects of early mobilization on mortality and long-term morbidity.
- Does-response relationship.
- Test effects of different ventilator patterns on ventilator-induced diaphragmatic injury.
- Test sedation protocols.
- Early oral food intake: Network with speech therapists.

