An example of machine integration

Massimiliano Paltenghi, MD

Department of Anesthesia, Critical Care and Emergency Spedali Civili University Hospital, Brescia, Italy

Michele Schiavo, Eng.D.

Department of Mechanical and Industrial Engineering

Br.A.I.N Summer School September 27, 2019

ACTIVA: Automatic Control in Total Intra Venous Anesthesia

Outline

- Take a look at the system's components
 - System Set-Up
- Explanation of GUI (Graphic User Interface)
- Simulator mode
 - Ready to go
 - Induction phase
 - Maintenance phase (surgical phase)
 - Patient waking up
- Clinical Case(s)
- Competitors
- Conclusions

System components

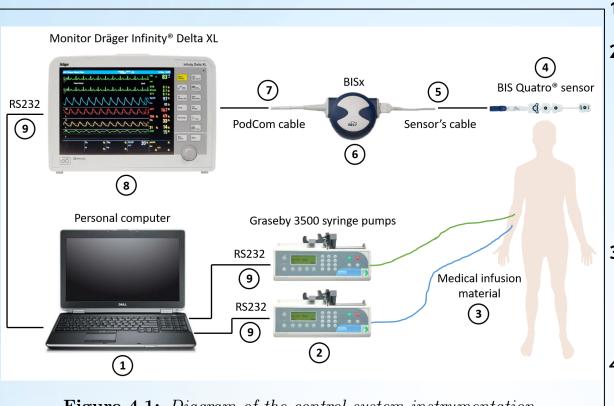
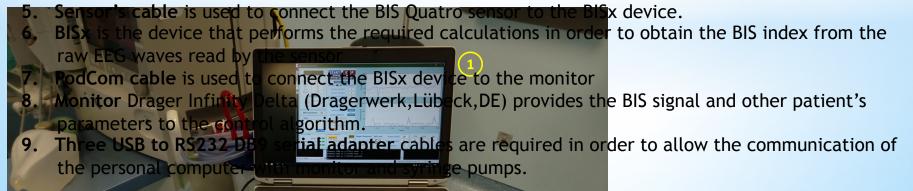



Figure 4.1: Diagram of the control system instrumentation.

- 1. Personal computer with ACTIVA software
- 2. Syringe pumps (Graseby 3500 -Smiths Medical, London, UK).
 - 1. Syringe pumps represent the control system's actuators.
 - 2. They are driven by the control algorithm.
 - 3. Two pumps are required, one for propofol and one for remifentanil.
- 3. Venous Line Access for drug's infusion (should be dedicated, or if not possible must be as close as possible the venous catheter to avoid boluses)
- 4. BIS Quatro sensor is the control system's sensor. It is composed by 4 electrodes placed on the patient's forehead that read EEG waves.

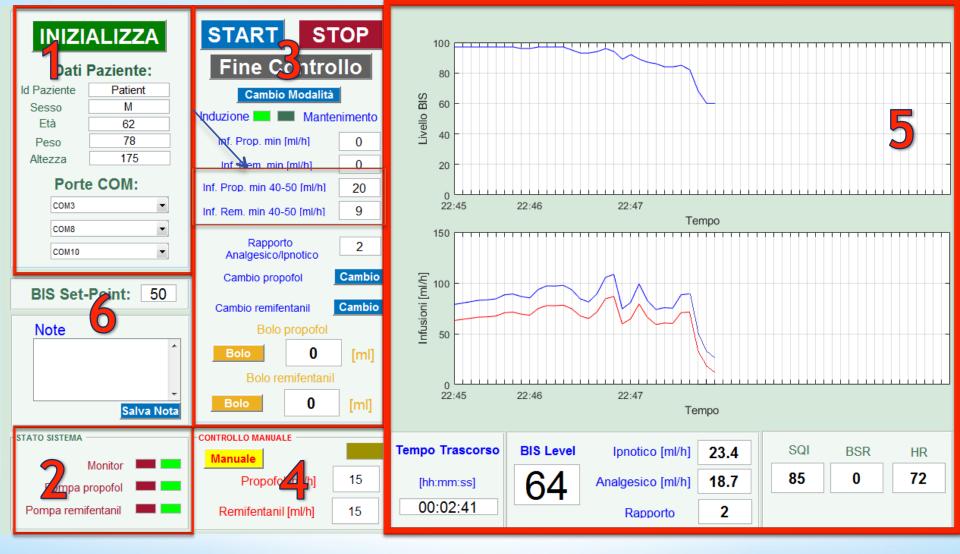
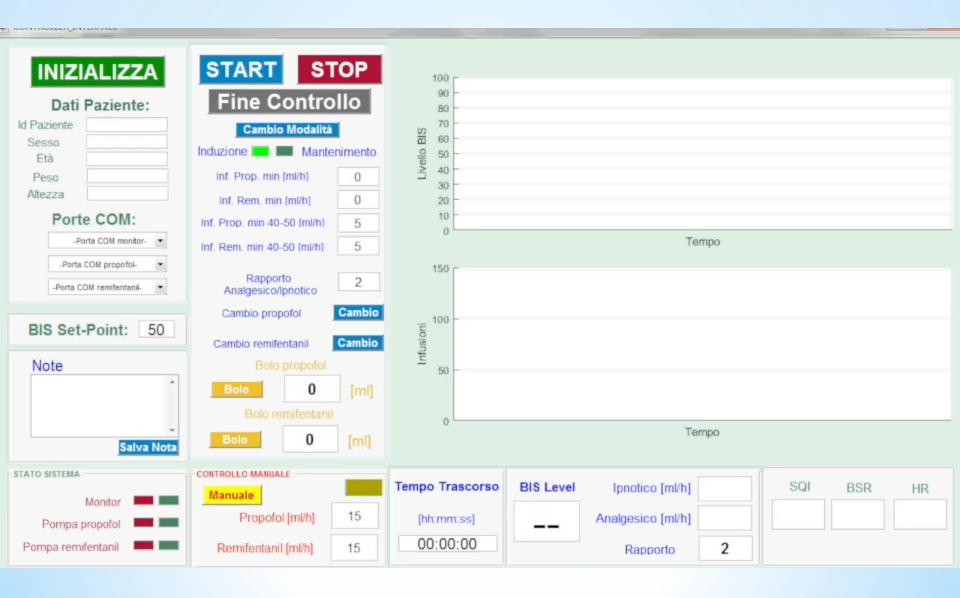
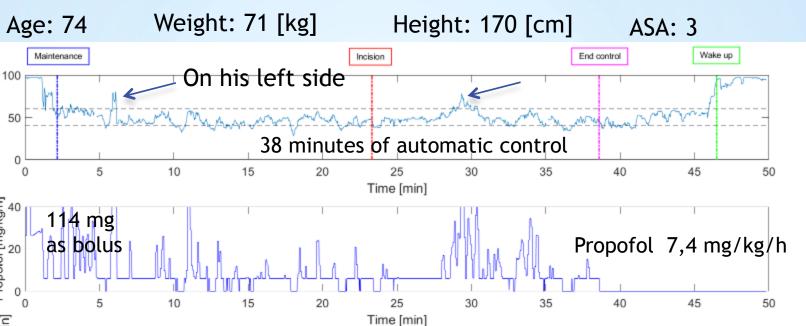
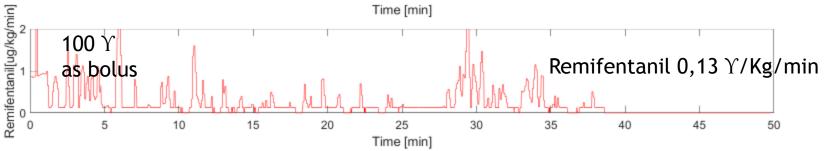



Figure 4.10: Screen shot of the ACTIVA GUI during runtime operation.

Here is ACTIVA G

Simulator mode (for training use)

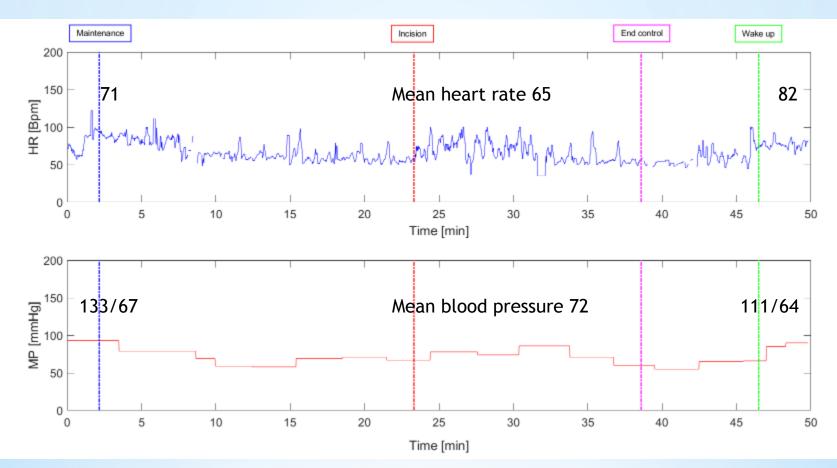




Giancarlo (scheduled for electrochemoterapy)

DoH [BIS]

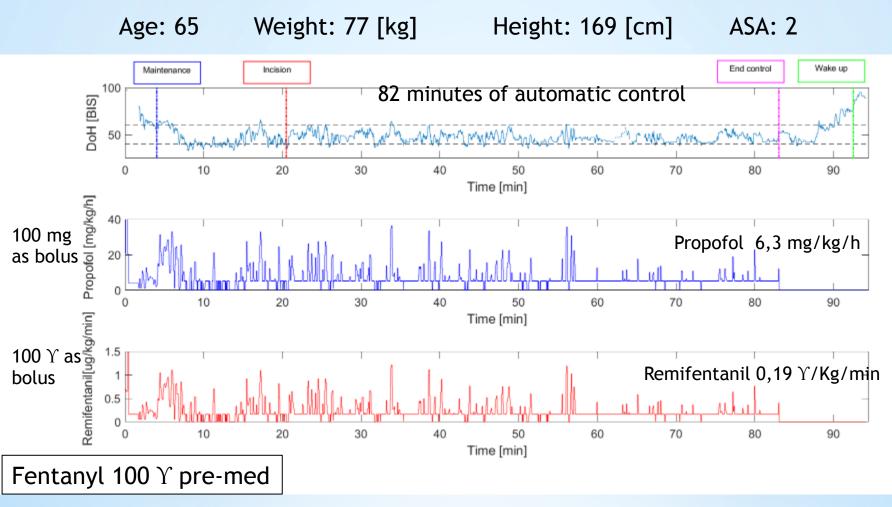
Propofol [mg/kg/h]



TT: 123 [sec] min BIS (after incision): 35 BIS 40-60: 82.94 [%]

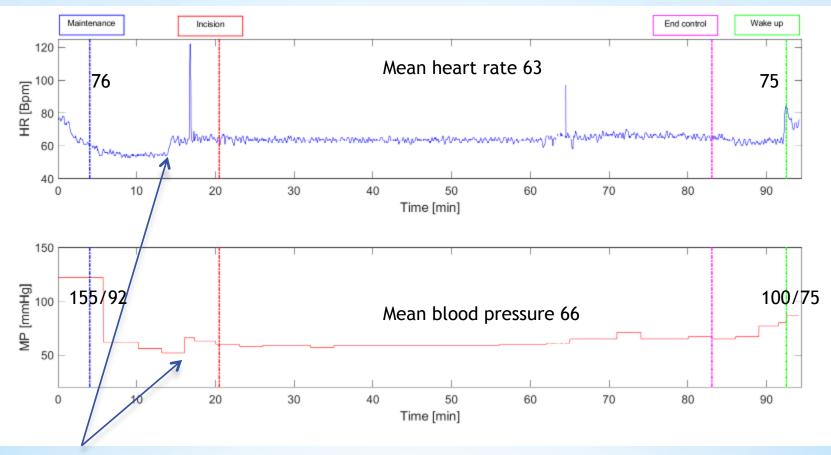
BIS NADIR (before incision): 30 max BIS: 78

wake up Time : 7 min 30 sec


Case 1

No vasopressor administered No pre-medication

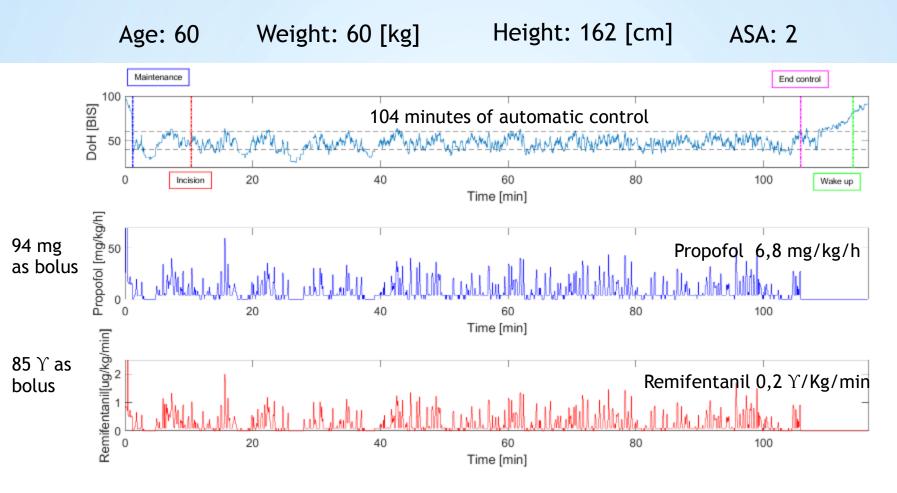
Mean BIS:48


Annamaria (scheduled for skin cancer melanoma and sentinel limph node biopsy)

TT: 4 [min] min BIS (after incision): 35 BIS 40-60: 88.62 [%] BIS NADIR (before incision): 38

max BIS: 64

wake up Time: 9 min and 24 sec

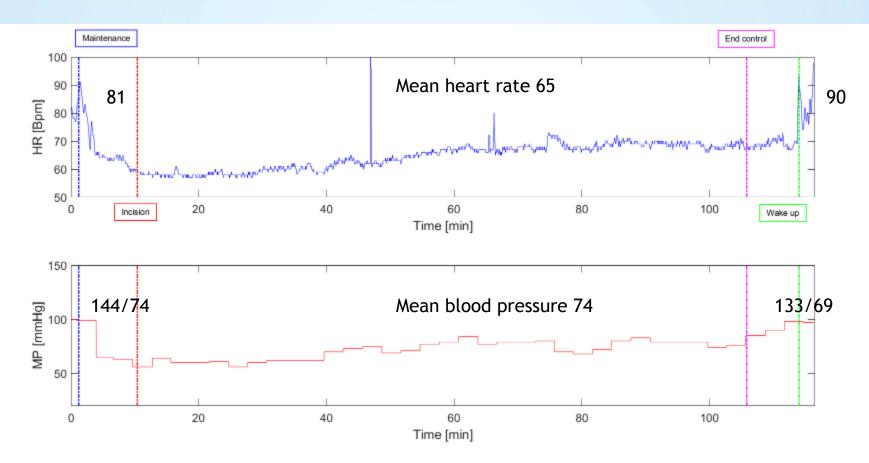


Ephedrine 10 mg

Mean BIS:47

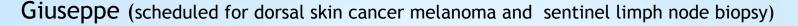
Elisabetta (scheduled for toe skin cancer melanoma and sentinel limph node biopsy)

Case 3

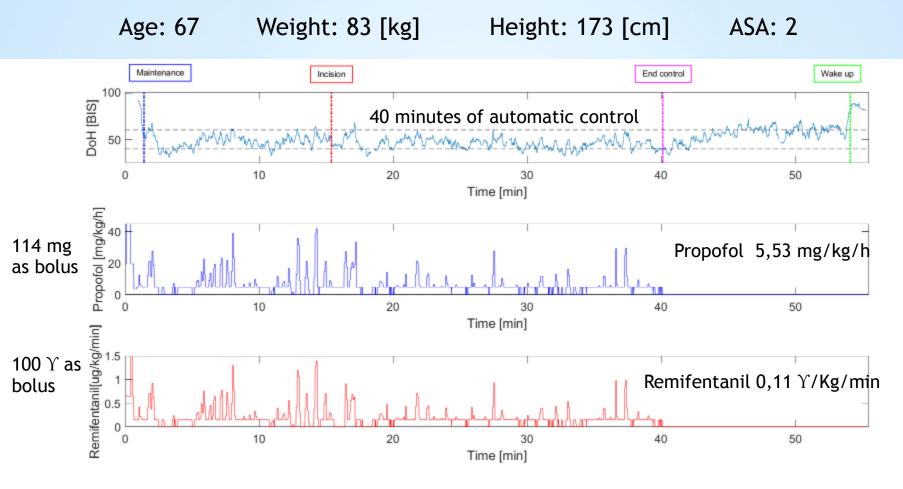


TT: 68 sec min BIS (after incision): 26 BIS 40-60: 82.7 [%]

BIS NADIR (before incision): 29


max BIS: 64

wake up Time: 8 min and 12 sec



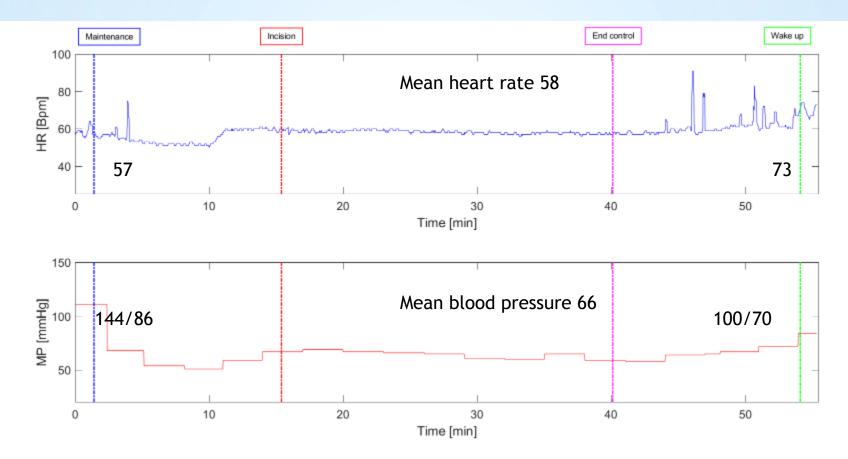
No vasopressor administered No pre-med

Mean BIS:47

Case 4

TT: 82 sec

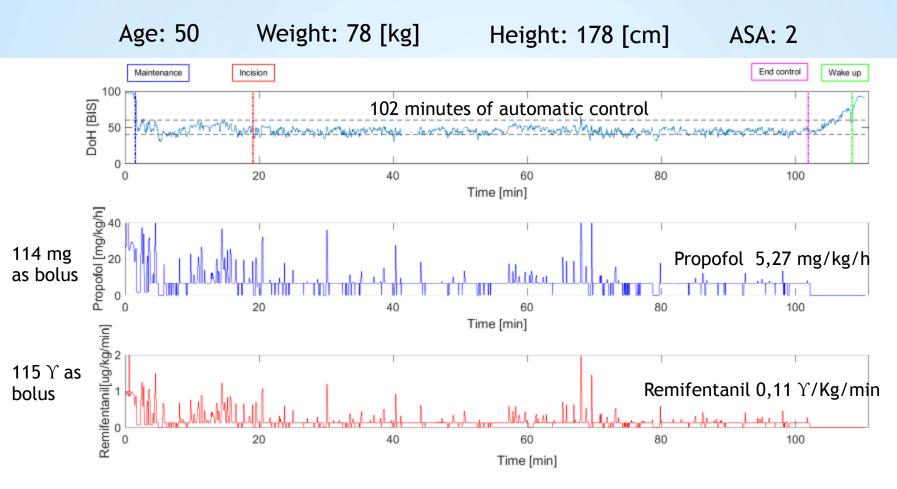
BIS NADIR (before incision): 31


min BIS (after incision): 32

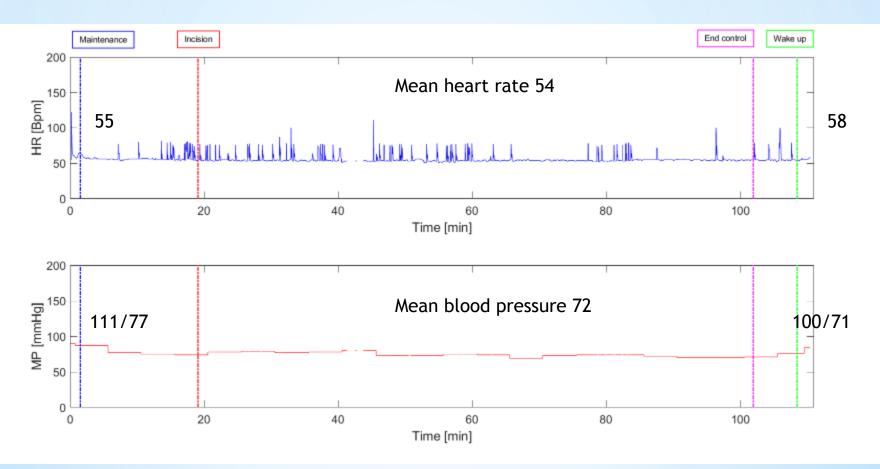
BIS 40-60: 84.92 [%]

max BIS: 68

wake up Time: 14 [min]


Pre-med with: 100 Y fentanil 1 mg midazolam

No vasopressor administered


Mean BIS:46

Rosario (scheduled for torax skin cancer melanoma and axillary sentinel limph node biopsy)

TT: 108 sec min BIS (after incision): 30 BIS 40-60: 84.93 [%]

BIS NADIR (before incision): 30 max BIS: 66 Wake up Time: 6 min and 36 sec

No vasopressor administered No pre-med

Competitors: BIS on target (%)

SYSTEMATIC REVIEW ARTICLE

	Automated Control	Manual Control	Mean difference		
Study		otal Mean SD		MD 95%-	CI W(random)
Agarwal 2009	19 80.40 4.60	18 69.6 7.60		10.80 [6.73; 14.8	7] 8.1%
Biswas 2013	20 77.40 13.07	20 75.0 11.00		2.40 [-5.09; 9.8	9] 7.1%
De Smet 2008	20 75.00 13.00	20 43.0 17.00		32.00 [22.62; 41.3	B] 6.4%
Dussaussoy 2014	18 94.00 12.00	18 74.0 19.00		20.00 [9.62; 30.3	B] 6.1%
Hemmerling 2010	20 84.00 14.30	20 66.0 20.80		18.00 [6.94; 29.0	6] 5.9%
Hemmerling 2013	93 81.40 14.50	93 69.6 21.90		11.80 [6.46; 17.1	4] 7.7%
Le Guen 2013	15 73.75 6.89	14 37.5 9.80		36.25 [30.04; 42.4	6] 7.5%
Liu 2006	83 89.00 9.00	81 70.0 21.00		19.00 [14.03; 23.9	7] 7.9%
Liu 2011	83 82.00 12.00	84 71.0 19.00		11.00 [6.19; 15.8	1] 7.9%
Liu 2012	30 80.00 6.25	31 60.0 11.75		20.00 [15.30; 24.7	0] 7.9%
Locher 2004	10 99.50 21.90	10 89.7 21.90		9.80 [-9.40; 29.0	0] 3.6%
Madhavan 2011	20 84.60 7.20	20 75.9 11.20		8.70 [2.86; 14.5	4] 7.6%
Puri 2007	20 87.32 9.10	20 77.3 14.30		10.02 [2.59; 17.4	5] 7.1%
Solanki 2010	20 68.70 15.60	20 45.4 22.00		23.30 [11.48; 35.1	2] 5.6%
Struys 2001	0 89.00 10.00	10 49.0 29.00		- 40.00 [20.99; 59.0	1] 3.6%
Random effects mode	el 481	479	\$\lap\$	17.44 [11.74; 23.1]	3] 100%
Heterogeneity: I-squared=	=85.8%, tau-squared=68.86,	p<0.0001			
			-40 -20 0 20 40		
		Favours M	anual Control Favours Auto	omated Control	

Figure 2. Forest plot presenting the percentage of time a given target (bispectral index or SE) was maintained within the desired range in closed-loop delivery systems (automated control) in comparison with manual control. The diamond represents the pooled results while the horizontal line represents the 95% confidence interval (CI).

February 2017 Volume 124 Number 2 on Anesthetic Clinical Pharmacology (www.anesthesia-analgesia.org) Brogi et al.

ACTIVA is 85% in the desired range

Competitors: Propofol and remifentanil doses

 Table 3 Dose and modifications of drugs and extubation time. *Significant difference at 0.05 level (two-tailed). Data are presented as mean (sp)

 (95% confidence interval), analysed using the Mann – Whitney U-test

6,9	McSleepy group (n=93)	Control group (n=93)	P-value
Mean propofol dose (μ g kg ⁻¹ min ⁻¹)	115 (30) (109/121)	108 (25) (103/113)	0.0801
Modifications of propofol doses (times h ⁻¹)	67 (18) (63/71)	6 (8) (4/8)	< 0.0001*
Mean remifentanil dose (μ g kg ⁻¹ min ⁻¹)	0.21 (0.11) (0.19/0.24)	0.19 (0.09) (0.17/0.20)	0.0742
Modifications of remifentanil doses (times h 0,21	28 (8) (26/29)	4 (5) (3/5)	< 0.0001*
Total rocuronium dose (mg kg^{-1})	1.1 (0.5) (1.0/1.2)	1.1 (0.6) (1.0/1.2)	0.6230
Time to extubation (min)	10.1 (4.7) (9.2/11.1)	13.7 (8.8) (11.9/15.4)	0.0013*

Table 3. Comparison of anesthetic procedures between the two groups during the maintenance phase.

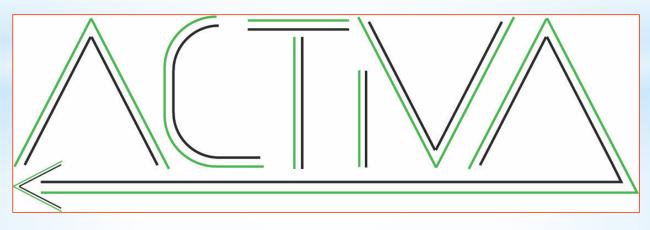
		Closed-loop (n = 89)	Opened-loop (n = 86)	Р
Maintenance time	(min)	199.3±96.2	202.5±101.0	0.832
Propofol	52			
Mean dose	(mg/k g h) J, J }	5.28±1.32	5.52±1.29	0.230
Mean target concentration	(µg/ml)	2.32±0.58	2.56±0.57	0.006
Adjusted times	(/h)	31.55±9.46	6.84±6.21	0.000
Remifentanil				
Mean dose	(µg/k g·h) →	11.14±3.08	11.05±3.30	0.848
Mean target concentration	^(ng/ml) 0,19	5.01±1.25	4.87±1.22	0.465
Adjusted times	(/h)	2.62±2.06	3.61±2.68	0.007

Liu Concert CL

Hemmerling

McSleepy

ACTIVA: Propofol 6,3 mg/Kg/h Remifentanil 0,15 Y/Kg/min


Why Automatic Control in TIVA?

- AC can decrease the anesthesiologist's workload C. Dussaussoy et al. J Clin Monit Comput (2014) (28:35-40)
- BIS on target may decrease postoperative delirium and cognitive decline Matthew T.V. Chan et al. (J Neurosurg Anesthesiol 2013;25:33-42)
- AC is clinically feasible in pediatric patients G. A. Orliaguet et al. (Anesthesiology 2015; 122:759-67)
- AC is clinically feasible in obese patients N. Liu et al. British Journal of Anaesthesia 114 (4): 605-14 (2015)
- AC may outperform manual administration of propofol and remiferitanil in critically ill patients with deep sedation Morgan Le Guen et al. Intensive Care Med (2013) 39:454-462
- AC can avoid unnecessary deep anesthesia Monk T et al. Anesth Analg 2005;100:4 -10 Lindholm M et al. Anesth Analg 2009;108:508 -12 Leslie K et al. Anesth Analg 2010;110:816 -22 Kertai M et al. Anesthesiology 2010;112:1116-27

ACTIVA: Automatic Control in Total Intra Venous Anesthesia

Conclusion

- Simulator Mode can be usefull to understand the system and for training
- Clinical study is approved by ethics committee and by Italian Health Department:
 - Primary outcome is safety
- First clinical data are encouraging

Thanks to ACTIVA team (past and present):

Dr. F. Padula, Dr. G. Vivacqua, Dr. L. Merigo, Dr. M. Schiavo, Dr.ssa L. Persico, Dr. F. Bonomi Prof. A. Visioli, Prof. N. Latronico *Thanks to Plastic Surgery Division at Spedali Civili di Brescia* Please contact us at massimiliano.paltenghi@asst-spedalicivili.it

BIBLIOGRAPHY

- 1. F. Padula, C. Ionescu, N. Latronico, M. Paltenghi, A. Visioli, G. Vivacqua "A gain-scheduled PID controller for propofol dosing in anesthesia" in: Proceedings 9th IFAC Symposium on Biological and Medical Systems, 2015, pp. 545-550.
- 2. F. Padula, C. Ionescu, N. Latronico, M. Paltenghi, A. Visioli, G. Vivacqua, "Inversion-based propofol dosing for intravenous induction of hypnosis", Communications in Nonlinear Science and Numerical Simulation, Vol. 39, pp. 481-494, 2016.
- 3. F. Padula, C. Ionescu, N. Latronico, M. Paltenghi, A. Visioli, G. Vivacqua, "Optimized PID control of depth of hypnosis in anesthesia", Computer Methods and Programs in Biomedicine, Vol. 144, pp. 21-35, 2017.
- 4. L. Merigo, M. Beschi, F. Padula, N. Latronico, M. Paltenghi, A. Visioli, "Event-based control of depth of hypnosis in anesthesia", Computer Methods and Programs in Biomedicine, Vol. 147, pp. 63-83, 2017
- L. Merigo, M. Beschi, F. Padula, N. Latronico, M. Paltenghi, A. Visioli, "Event based control of Propofol and Remifentanil coadministration during clinical Anesthesia" in: 3rd International Conference on Event-Based Control, Communication and Signal Processing, Funchal, Madeira (Portugal), 24-26 May 2017.
- 6. L. Merigo, F. Padula, N. Latronico, T. Medonça, M. Paltenghi, P. Rocha Malonek and A. Visioli, "On the identification of Propofol effects on anesthesia using BIS measurements", 20th IFAC 2017 World Congress, Toulouse, France, 9-14 July 2017.
- 7. L. Merigo, M. Beschi, F. Padula, N. Latronico, M. Paltenghi, A. Visioli, Controllo a eventi della somministrazione di Propofol e Remifentanil durante anestesia clinica, Automazione e Strumentazione, Novembre 2017
- 8. L. Merigo, F. Padula, A. Pawlowski, S. Dormido, J. L. Guzmán Sánchez, N. Latronico, M. Paltenghi, and A. Visioli, *A model-based control scheme for depth of hypnosis in anesthesia* Biomedical Signal Processing and Control, 42:216-229, 2018.
- 9. L. Merigo, F. Padula, N. Latronico, T. Mendonça, M. Paltenghi, P. Rocha, A. Visioli, *Optimized PID tuning for the automatic control of neuromuscular blockade* 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control, Gent, Belgium, 9-11 May 2018.
- 10. L. Merigo, M. Beschi, F. Padula, N. Latronico, T. Mendonça, M. Paltenghi, A. Visioli, *Optimization of PIDPlus Control for Neuromuscular Blockade During General Anesthesia*, 4th International Conference on Event-Based Control, Communication and Signal Processing, Perpignan, France, 27-29 June 2018.
- 11. Z. Guo, A. Medvedev, L. Merigo, N. Latronico, M. Paltenghi, A. Visioli, Synthetic Patient Database of Drug Effect in General Anesthesia for Evaluation of Estimation and Control Algorithms, 18th IFAC Symposium on System Identification, Stockholm, Sweden, 9-11 July 2018.
- 12. L. Merigo, M. Beschi, F. Padula, N. Latronico, M. Paltenghi, A. Visioli, Optimized PID Control of Propofol and Remifertanil Coadministration for General Anesthesia Commun Nonlinear Sci Numer Simulat, 72 :194-212, 2019.

SEE YOU NEXT YEAR... MAYBE HANDS ON SESSION: ACTIVA!!??